Name:

-	
Data	•
Date	

Math Club Logarithm Worksheet 4: Logarithm Questions from Last 5 years

Many problems on Logarithms in the Euclid requires a detailed written solution. For each of the following questions, please provide a written solution with the space provided:

1. Determine all values of "x" such that: $\log_{2x} \left(48\sqrt[3]{3} \right) = \log_{3x} \left(162\sqrt[3]{2} \right)$ Euclid

- 2. Determine all real numbers X>0 for which $\log_4 x \log_x 16 = \frac{7}{6} \log_x 8$ (Euclid)
- 3. Determine all real numbers "x" for which $(\log_{10} x)^{\log_{10}(\log_{10} x)} = 10,000$ (Euclid)

4. The solution of the equation $7^{x+7} = 8^x$ can be expressed in the form $x = \log_b 7^7$, what is the value of "b"?(AMC!2)

5. What is the value of "x" for which the equation is true? $\frac{1}{\log_2 a} + \frac{1}{\log_3 a} + \frac{1}{\log_4 a} = 1$ (AMC12)

6. The sequence of terms forms an arithmetic progression. What is the value of "x"? $\log_{12} 162$, $\log_{12} x$, $\log_{12} y$, $\log_{12} z$, $\log_{12} 1250$

- 7. Let "x", "y" and "z" all exceed 1, and let "w" be a positive number such that $\log_x w = 24$, $\log_y w = 40$, and $\log_{xyz} w = 12$. Find $\log_z w$.
- 8. Determine all pairs (a,b) of real numbers that satisfy the following system of equations. Give your answers as pairs of simplified exact numbers: (Euclid)

$$\sqrt{a} + \sqrt{b} = 8$$
$$\log_{10} a + \log_{10} b = 2$$

- 9. Consider the following system of equations in which all logarithms have base 10:
 - a) If a=-4, b=4, and c=-18, solve the system of equations
 - b) Determine all triples (a,b,c) of real numbers for which the system of equations has infinite number of solutions (x,y,z) (Euclid)

 $(\log x)(\log y) - 3\log 5y - \log 8x = a$ $(\log y)(\log z) - 4\log 5y - \log 16z = b$ $(\log z)(\log x) - 4\log 8x - 3\log 625z = c$